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• DESIGN: Multicenter cross-sectional case-control ret- 
rospective study. 
• METHODS: A total of 3886 unoperated eyes from 

3412 patients had Pentacam and Corvis ST (Oculus 
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Optikgeräte GmbH) examinations. The database in- 
cluded 1 eye randomly selected from 1680 normal pa- 
tients (N) and from 1181 “bilateral” keratoconus (KC) 
patients, along with 551 normal topography eyes from 

patients with very asymmetric ectasia (VAE-NT), and 

their 474 unoperated ectatic (VAE-E) eyes. The current 
TBIv1 (tomographic-biomechanical index) was tested, 
and an optimized AI algorithm was developed for aug- 
menting accuracy. 
• RESULTS: The area under the receiver operating char- 
acteristic curve (AUC) of the TBIv1 for discriminating 
clinical ectasia (KC and VAE-E) was 0.999 (98.5% sen- 
sitivity; 98.6% specificity [cutoff: 0.5]), and for VAE- 
NT, 0.899 (76% sensitivity; 89.1% specificity [cutoff: 
0.29]). A novel random forest algorithm (TBIv2), devel- 
oped with 18 features in 156 trees using 10-fold cross- 
validation, had a significantly higher AUC (0.945; De- 
Long, P < .0001) for detecting VAE-NT (84.4% sen- 
sitivity and 90.1% specificity; cutoff: 0.43; DeLong, P 

< .0001) and a similar AUC for clinical ectasia (0.999; 
DeLong, P = .818; 98.7% sensitivity; 99.2% specificity 

[cutoff: 0.8]). Considering all cases, the TBIv2 had a 
higher AUC (0.985) than TBIv1 (0.974; DeLong, P < 

.0001). 
• CONCLUSIONS: AI optimization to integrate 
Scheimpflug-based corneal tomography and biome- 
chanical assessments augments accuracy for ectasia 
detection, characterizing ectasia susceptibility in the 
diverse VAE-NT group. Some patients with VAE may 

have true unilateral ectasia. Machine learning consider- 
ing additional data, including epithelial thickness or other 
parameters from multimodal refractive imaging, will con- 
tinuously enhance accuracy. NOTE: Publication of this 
article is sponsored by the American Ophthalmological 
Society. (Am J Ophthalmol 2023;251: 126–142. 
© 2023 The Authors. Published by Elsevier Inc. 
This is an open access article under the CC BY license 
( http://creativecommons.org/licenses/by/4.0/ )) 
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efractive surgery has stimulated tremendous
advances in corneal imaging to enhance safety and
predictability of elective and therapeutic procedures.

As predicted by Wilson and Klyce 1 in 1991, advances in
corneal analysis enable the surgeon to customize refrac-
tive corrections and enhance the efficacy to a level that
Helmholtz, Placido, and Gullstrand would undoubtedly
have been impressed. Nevertheless, the overwhelming data
generated determined the need for more efficient ways to
analyze the data. Artificial intelligence (AI), introduced
in 1956, has gained increased relevance in ophthalmology
with multiple potential applications. 2-6 AI algorithms use
computer processing power to simulate and augment hu-
man interpretation. Such an approach enhances data anal-
ysis and the efficiency of clinical decisions by employing a
consistent multidimensional assessment of the large volume
VOL. 251 OPTIMIZED TBI FOR ENH
f information available, such as when assessing data from
ultimodal corneal and refractive imaging. 7 , 8 

Maeda and associates 9 pioneered the field in describing
 neural network (NN) model based on 11 Placido disk–
ased topography indices. The automated NN pattern in-
erpretation provided a correct classification for all 108
aps in the training set but correctly classified only 80%

60 of 75) of the maps in the testing group. Although such a
ifference was statistically significant, the authors discussed
he concept of reinforced learning for further refining the
odel and predicted the paradigm shift related to AI in the

eld. 9 Since then, AI has made a significant impact on the
etection and treatment of keratoconus (KC) and ectatic
orneal diseases (ECD). 10-24 

The paradigm shift in ECD management was related
o introducing crosslinking and intrastromal corneal ring
egments that could be used earlier in the disease pro-
ess than penetrating keratoplasty. 25 , 26 These newer treat-
ent modalities highlighted the importance of recognizing
ild or subclinical ectatic disease, which is also paramount

or identifying patients at risk for iatrogenic ectasia after
orneal laser vision correction (LVC). 27 Assessing ecta-
ia risk among elective refractive surgery candidates has
volved to the characterization of the inherent suscep-
ibility of the cornea for biomechanical decompensation
nd ectasia progression, which lies beyond detecting mild
ases with ECD. 28-30 In addition, the ectasia risk assessment
hould also include the impact of the LVC procedure, which
as been heightened by studies involving finite element
nalysis. 31 , 32 This concept is in agreement with McGhee’s
-hit hypothesis that genetic (intrinsic) and environmen-
al (extrinsic) factors play a role in the etiology of KC, 25

nd the biomechanical cycle of decompensation of corneal
ctasia proposed by Dupps and Roberts. 33 

Patients presenting with clinical ectasia in one eye but
ith the contralateral eye with normal anterior curvature

topography) and normal vision have been classically re-
erred to as one of the possible categories of forme fruste KC
FFKC). 34 Although there are no unified criteria to define
ubclinical KC (SCKC) and FFKC in the literature, 35

uch asymmetric cases have been studied using advanced
maging, such as corneal tomography, to demonstrate an
mproved ability to detect ECD at an early preclinical
tage. 7 , 12 , 13 , 17 , 19 , 36-39 Such cases are referred to as very
symmetric ectasia (VAE) 17 or highly asymmetric ecta-
ia. 19 In a study involving cases from Rio de Janeiro (Brazil)
nd Milan (Italy), the tomographic and biomechanical
ndex (TBI) was developed with AI by applying random
orest with leave-one-out cross-validation (RF/LOOCV).
he training set included 94 normal topography eyes from
atients with VAE (VAE-NT), along with 1 eye randomly
elected from each of 480 normal patients, 1 eye randomly
elected from 204 “bilateral” KC cases, and the 72 unop-
rated ectatic eyes (VAE-E). Considering the LOOCV
esult, the cutoff of 0.79 provided 100% sensitivity and
pecificity to detect clinical ectasia (KC + VAE-E cases).
ANCED CORNEAL ECTASIA 127 
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An adjusted cutoff of 0.29 provided 96% specificity and
90.4% sensitivity, with an area under the receiver operating
characteristic curve (AUC) of 0.985. 17 

External validation studies confirmed that the TBI had a
very high sensitivity and specificity for detecting ECD. 40-47 

Some studies, however, found a relatively lower sensi-
tivity for detecting abnormality among eyes considered
SCKC. 48-52 This could be explained by different criteria
used to define SCKC, 53 including having normal tomogra-
phy and biomechanics, based on BAD-D (Belin/Ambrósio
Enhanced Ectasia Deviation) 37 and CBI (Corvis Corneal
Biomechanical Index). 15 One must consider that some of
these supposedly false-negative SCKC cases may truly rep-
resent patients with unilateral ectasia due to mechanical
trauma such as eye rubbing. 54-57 Nevertheless, these find-
ings support the unquestionable need for further enhancing
the sensitivity to identify subclinical or mild ectasia cases. 

The current study aimed to test if AI for integrating
Scheimpflug tomography and biomechanical assessments
could be upgraded or optimized by machine learning, us-
ing a more extensive population data set, thereby providing
higher accuracy for ectasia detection. 

METHODS 

The current multicenter retrospective study followed the
1964 Declaration of Helsinki (revised in 2000). The insti-
tutional review board and human ethics committee of the
Universidade Federal de São Paulo (UNIFESP, São Paulo,
Brazil) approved this study. 

• PARTICIPANTS: The study database comprised 3886un-
operated eyes from 3412 patients. Twenty-five international
centers contributed to the data collection. In a similar fash-
ion to work accomplished in the development of the first
version of the TBI, 17 the eyes were divided into 4 groups:
normal patients (N), clinical “bilateral” KC patients, VAE-
NT, and the VAE-E eyes from the patients with VAE. One
eye was randomly selected from the N and KC groups. Both
eyes of the patient with VAE entered the study unless the
VAE-E eye had undergone any surgery (n = 1680 [N], 1181
[KC], 551 [VAE-NT], and 474 [VAE-E], respectively). 

Every patient had a comprehensive ophthalmic exami-
nation, including the Corvis ST and Pentacam HR (Ocu-
lus Optikgeräte GmbH). As discussed below, only exami-
nations with adequate quality for proper analysis were in-
cluded. Patients were asked to suspend the use of soft con-
tact lens wear for at least 1 week before the examination,
and rigid or hybrid contact lenses were discontinued for a
minimum period of 3 weeks. All cases had the Quad Re-
fractive Map tomographic data blindly re-evaluated by a
fellowship-trained expert (R.A.) on Cornea and Refractive
Surgery to confirm the inclusion criteria. 
128 AMERICAN JOURNAL OF OP
The inclusion criterion for a normal subject (N) was a
linically unremarkable general eye examination in both
yes, including normal slitlamp biomicroscopy, distance-
orrected visual acuity of 20/25 or better, normal Penta-
am topometric findings, no previous surgery, and no use
f topical medications different from artificial tears in both
yes. The diagnostic criterion for KC was clinical ectasia in
oth eyes without previous ocular surgeries. 58 , 59 The crite-
ia for the diagnosis of corneal ectasia included topometric
haracteristics, such as skewed asymmetric bow-tie, inferior
teepening, and at least 1 biomicroscopic slitlamp finding
Munson’s sign, Vogt’s striae, Fleischer’s ring, apical thin-
ing, Rizutti’s sign). 59 VAE criteria were the diagnosis of
ctasia in 1 eye based on the prior hitherto described cri-
eria and the fellow eye being clinically normal based on
ormal biomicroscopy and a relatively normal front surface
urvature (Pentacam topometric data). 

All measurements with the Corvis ST and Pentacam HR
ere taken by experienced technicians considering previ-
usly reported protocols. 17 Proper examination quality was
lso assured by a manual, frame-by-frame analysis of each
xamination, made by an independent masked examiner to
nsure the quality of each acquisition. The primary crite-
ion for the Corvis ST measurement was good edge detec-
ion over the whole deformation response, excluding align-
ent errors (x-direction) and blinking errors. Pentacam
R and Corvis ST data were exported to a custom spread-

heet using special software. The Pentacam software version
.21r59 and Corvis ST software version 1.6b2015 were used
o extract an anonymous database containing 340 parame-
ers from rotating Scheimpflug tomography and 90 parame-
ers from the ultrahigh-speed Scheimplfug deformation re-
ponse during noncontact tonometry. 

ARTIFICIAL INTELLIGENCE OPTIMIZING PROTOCOL

ND STATISTICS: Different software tools performed
tatistical analyses and AI development: MedCalc
tatistical Software version 16.8.4 (MedCalc, URL:
ttps://www.medcalc.org/), SPSS version 23 (IBM Corp),
he R-Core Team version 3.3.1.2016 (R Foundation for
tatistical Computing, URL: https://www.R-project.org/),
 custom-written MATLAB program (R14; The Math-

orks), the Orange version 3.21.1 (University of
jubljana, URL: https://orangedatamining.com/), and
he Seaborn Python data visualization version 0.11.2
 http://seaborn.pydata.org/). 

The data protection procedures included deidentifying
he data by a computer server to store and process the data
hat were based on the TRIPOD (transparent reporting
f a multivariable prediction model for individual progno-
is or diagnosis) recommendations. 60 The data were ana-
yzed and combined using different AI approaches using the
Knowledge Discovery in Databases” methodology. 61 The
asic flow of steps for the data mining and the creation of
he AI functions is summarized in Figure 1 . The process goes
rom understanding the problem based on previous knowl-
HTHALMOLOGY JULY 2023 
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FIGURE 1. Basic flow of steps for the data mining and the creation of the artificial intelligence. 
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edge, feature selection, and creating different algorithms
with cross-validation to validate the models. Then, these
AI models are carefully analyzed and further refined to se-
lect the final best algorithm. 

The first step was data cleaning and preprocessing. The
initial data set has 430 attributes, including data related to
the examination acquisition. Basic operations removed all
irrelevant attributes with more than 40% of the same value,
more than 40% of empty values, or with a variance of less
than 0.09 among the patients. This step reduced the data
set to 219 attributes. Then, the data sets from the original
TBIv1 study (n = 778 patients; 850 eyes) 17 and from the
first external validation, including cases from Rio de Janeiro
(n = 487 patients; 544 eyes), 42 were separated. The remain-
ing 2474 eyes from 2147 patients were divided into 2 sub-
sets, training (2/3) and validation (1/3 eyes), for multiple
iterations in the next step. Data reduction and projection
were performed on training subsets using automatic fea-
ture selection techniques, such as forward selection, back-
ward elimination, and genetic algorithms. 62 These meth-
ods were applied in a wrapper approach with the following
machine learning algorithms: NN with multilayer percep-
tron (NN/MLP), k-nearest neighbors, decision tree (DT),
logistic regression analysis (LRA), and RF. More than 1500
different attribute combinations were extracted as the next
step considering or not including the TBIv1. 

The next phase focused on the models that did not in-
clude the TBIv1 and applied those models to the complete
data set. At this point, the goal was to build up and rank
the predictive models based on the accuracy for ectasia de-
tection. Each selected attribute combination was performed
using the selected machine learning algorithm. The 10-fold
cross-validation was chosen because of the larger popula-
tion, decreasing computational time, and complexity. In
this step, 790 predictive models were analyzed and ranked
automatically based on the best AUC and sensitivity for
detecting cases with VAE-NT. The top 15 models were se-
lected and carefully analyzed for electing the best 5 models.
Each model was carefully reviewed, considering the clinical
relevance of the selected features. Finally, the set of features
 t

VOL. 251 OPTIMIZED TBI FOR ENH
or each model was tested with different machine learning
lgorithms to define the best model based on the highest
onsistency and accuracy. 

STATISTICAL ANALYSIS: There were 3 types of analysis
erformed: normal vs “disease” (KC + VAE-E + VAE-NT),
 vs clinical ectasia (KC + VAE-E), and N vs VAE-NT.

irst, the Shapiro-Wilk test checked for normal distribu-
ions. Considering that the distributions of the parameters
n the KC group were non-normally distributed, the ana-
yzed parameters were compared among the groups using
he nonparametric Kruskal-Wallis test, followed by the post
oc Dunn’s test to compare each pair of groups. Statistical
ignificance was determined for a P value lower than .001. 

The AUC was calculated for each parameter, consider-
ng the best cutoff value for the highest accuracy, determin-
ng sensitivity and specificity. Pairwise comparisons of the
UCs were accomplished with a nonparametric approach

s described by DeLong and associates 63 to compare the per-
ormance of diagnostic tests. Separation curves that display
ccuracy as a function of shifting the cutoff value were plot-
ed as described by Bühren and associates. 11 This method
llows for comparisons among the different metrics using
ormalized cutoff points by a Z transformation in which the
ptimum cutoff is adjusted to zero. The area under the sep-
ration curve (AUSEP) calculates for the y limits of 50%
nd 100% accuracy, separating the x limits of −1 and 1 stan-
ard deviations. Thus, the AUSEP values indicate the toler-
nce to shifts on the cutoff criteria, which may evaluate the
iscriminatory ability of the parameter. 11 For receiver op-
rating characteristic analysis, a custom-written MATLAB
rogram (R14; the MathWorks) was used to confirm results
btained by MedCalc. All combined parameters were pro-
rammed to have their output values as a scale value rang-
ng from zero to 1. An LRA function was created for the
AD-D to facilitate graphical comparisons. 17 

The correlations between the parameters were tested
ith Pearson’s correlation coefficient (r) or Spearman’s co-
fficient of rank correlation ( ρ) accordingly to the distribu-

ion of the variables. 

ANCED CORNEAL ECTASIA 129 



TABLE 1. Descriptive Statistics for Age 

Group N Mean SD Median Minimum 25th Percentile 75th Percentile Maximum 

Clinically normal 1680 34.19 13.69 30.37 6.99 24.45 41.00 90.06 

KC 1181 31.59 11.18 29.59 6.64 23.67 37.18 78.39 

VAE-E 474 31.03 12.74 27.88 10.34 21.88 37.44 83.15 

VAE-NT 551 31.02 13.03 27.93 10.34 21.65 37.22 83.15 

KC = keratoconic, VAE-E = ectatic unoperated eyes from the very asymmetric ectasia patients, VAE-NT = normal topography from very 

asymmetric ectasia patients. 

FIGURE 2. Descriptive statistics for age. KC = keratoconic, N = normal patient, VAE-E = ectatic unoperated eyes from the very 
asymmetric ectasia patients, VAE-NT = normal topography from very asymmetric ectasia patients. 
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RESULTS 

Table 1 summarizes the age demographics. The mean age
in the normal group was 34.2 years, and 31.6 and 31 years
in the KC and VAE groups, respectively. There were sig-
nificant differences in age (Kruskal-Wallis test, P < .001),
with post hoc Dunn’s analysis being significant for the dif-
ferences with normal patients being older than the other
groups ( P < .001). However, such differences were consid-
ered of limited clinical significance, as shown in Figure 2 . 

The algorithm with the highest accuracy for enhanc-
ing ectasia detection was a novel RF algorithm, called the
BrAIN-TBI (Brazilian Artificial Intelligence Networking
in Medicine) or TBIv2. The TBIv2 included 18 features us-
ing 156 trees with 10-fold cross-validation. Table 2 summa-
rizes the 18 features selected, including 10 parameters from
rotating Scheipflug corneal tomography (Pentacam) and 8
parameters from corneal deformation response during non-
contact tonometry (Corvis ST). 

An LRA function was applied for the BAD-D version 3
(Belin/Ambrósio Enhanced Ectasia Deviation [v3]), so that
it was normalized as an index, ranging from 0 to 1 (BAD-
DI). The BAD-DI was (y = a + b 

∗ x): −4.02447 (con-
130 AMERICAN JOURNAL OF OP
tant) + (2.5203 

∗ BAD-D). The BAD-D and BAD-DI had
 perfect correlation (Spearman’s coefficient of rank corre-
ation; P < .0001; ρ = 1.0). 

Figure 3 illustrates the scatterplot matrices of the most
ignificant parameters plotted pairwisely: age, BAD-D,
AD-DI, PRFI (Pentacam Random Forest Index), stiffness
arameter at first applanation, CBI, TBIv1, and TBIv2.
igure 4 presents the box/dot-plot distributions for the most
elevant parameters in the 4 groups. 

Table 3 A, B, and C summarizes the AUC data, com-
aring the accuracy of the TBIv1, 17 the novel TBIv2,
he PRFI, 16 the BAD-D, 37 and the CBI 15 for N × all
KC + VAE-E + VAE-NT), N × clinical ectasia
KC + VAE-E), and N × VAE-NT, respectively. For ev-
ry pairwise comparison for every analysis, the RF parame-
ers (TBIv1, TBIv2, and PRFI) had a statistically significant
igher AUC than BAD-D and CBI (DeLong, P < .001). In
ddition, the BAD-D had a higher AUC than CBI for all
tudies (DeLong, P < .001). 

For all cases (N × KC + VAE-E + VAE-NT), the TBIv1
ad an AUC of 0.974, with 90% sensitivity and 96.2%
pecificity for a cutoff of 0.41. The AUC of the TBIv1 was
.999 for discriminating clinical ectasia (KC and VAE-E),
ith 98.5% sensitivity and 98.6% specificity for a cutoff of
HTHALMOLOGY JULY 2023 



TABLE 2. The 18 Features Selected for the AI Algorithm of the TBIv2 

Parameter Origin Definition 

CBI Corvis ST Corvis Corneal Biomechanical Index 

DARatioTMax2mm Corvis ST Ratio of the deformation amplitude at 2 mm 

DensitoIncreaseMax Corvis ST The maximal change in backscattering of the cornea during the exam 

HC Deformation Amp_mm Corvis ST Highest concavity deformation amplitude 

MaxInverseRadius Corvis ST Minimal radius of curvature during the concave phase of deformation 

PeakDist_mm Corvis ST Horizontal distance between the 2 highest points (nasal and temporal) of the cornea at the 

time of maximum deformation 

SPA1 Corvis ST Stiffness parameter at the first applanation 

SPHC Corvis ST Stiffness parameter at the highest concavity 

BADDb Pentacam Deviation from normality of the enhanced posterior elevation best-fit-sphere 

BFSFront Thinnest 3mm Pentacam Best-fit sphere for anterior 3 mm centered at the thinnest point 

ISValue Pentacam Infer ior-super ior axial steepening 

KMaxFrontY Pentacam Vertical deviation of the point with maximal keratometry (Kmax) from the apex 

Pac_Asymm_ApexVert8.0mm Pentacam Vertical asymmetry of the pachymetry at 8 mm 

PRFI Pentacam Pentacam Random Forest Index 

SphRMin Pentacam The minimal mean radius of a ring based on Fourier analysis (zero-order component) 

TiltMinAxisMVP Pentacam Axis location of maximal decentration based on Fourier analysis (first-order wave component) 

TiltMinMVP Pentacam The maximum decentration based on Fourier analysis (first-order wave component) 

Ele. BBFTE 8mm @ Thinnest Pentacam Back (poster ior) elevation at the thinnest point consider ing a best-fit tor ic ellipsoid for 8 mm 

AI = artificial intelligence, TBI = tomographic and biomechanical index. 
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0.5. The AUC of the TBIv1 was 0.899 for VAE-NT, with
76% sensitivity and 89.1% specificity for an optimized cut-
off of 0.29. For all cases, the TBIv2 had an AUC of 0.985,
with 92.8% sensitivity and 97.4% specificity (cutoff: 0.65),
which was higher than TBI (0.974; DeLong, P < .0001).
The TBIv2 had a similar AUC for clinical ectasia (0.999;
DeLong, P = .818; 98.7% sensitivity and 99.2% specificity
[cutoff: 0.8]) but had a higher separation curve. The TBIv2
had a significantly higher AUC (0.945; DeLong, P < .0001)
for detecting VAE-NT (84.4% sensitivity and 90.1% speci-
ficity [cutoff: 0.43]; DeLong, P < .001). The combination
of these 18 features also performed well in an LRA with
an AUC of 0.984, and an NN/MLP including these fea-
tures had an AUC of 0.981 for all cases (N × KC + VAE-
E + VAE-NT). 

The study comparing normal vs all cases or “disease”
(KC + VAE-E + VAE-NT) is summarized in Table 3 A and
Figure 5 A. The TBIv2 had a significantly higher AUC than
all other parameters (DeLong, P < .0001). The TBIv1 had
a larger AUC (0.974) than PRFI (0.972) but with no statis-
tical significance (DeLong, P = .2979). The AUSEP curves
provided higher separation for the TBIv2 than the TBIv1
and PRFI (87, 82, and 68, respectively). 

Table 3 B and Figure 5 B indicate the study to distinguish
N from clinical ectasia cases (KC + VAE-E). The TBIv2,
the TBIv1, and the PRFI had a similar AUC of 0.999 and
the same 95% confidence intervals between 0.997 and 1.
The AUC of the BAD-D was 0.995, which was statistically
lower than the TBI and PRFI, but higher than the AUC of
the CBI (0.968; DeLong, P < .0001). 
VOL. 251 OPTIMIZED TBI FOR ENH
The comparison of normal corneas vs the cases with
AE-NT is presented in Table 3 C and Figure 5 C. In

hese diverse cases, the difference in accuracy is more pro-
ounced. The TBIv2 had a higher AUC (0.945) than all
ther parameters (DeLong, P < .0001). The TBIv1 had a
arger AUC (0.899) than PRFI (0.893) but was not statis-
ically significant (DeLong, P = .299). The AUSEP curves
rovided higher separation for the TBIv2 than the TBIv1
nd PRFI (70, 58, and 36, respectively). The BAD-D had an
UC of 0.823, which was statistically lower than the TBIv1

nd PRFI but higher than the AUC of the CBI (0.788; De-
ong, P < .0001). The TBIv1 and TBIv2 had a very high
ositive correlation with ρ of 0.902 (95% confidence inter-
al: 0.896-0.908; Spearman, P < .0001; Figure 6 ). 

The Kruskal-Wallis test found statistically significant dif-
erences for the TBIv1, TBIv2, PRFI, BAD-D, and CBI
or maximal axial keratometric value (Kmax), inferior-
uperior asymmetry value (IS-value), and Ambrósio’s rela-
ional thickness to the meridian with maximal pachymetric
ncrease (ART-max). 64 There was statistical significance for
very parameter at each pairwise group comparison in post
oc Dunn ( P < .001), unless for KC vs VAE-E in any pa-
ameter. Table 4 summarizes the descriptive statistics (me-
ian and range) for these parameters. 

The BAD-D, the best cutoff for distinguishing normal
orneas from all groups (KC + VAE-E + VAE-NT), was
.82, with a sensitivity of 85.5% and a specificity of 97.7%.
he BAD-DI cutoff of 0.63 provided similar accuracy. For
etecting clinical ectasia (KC + VAE-E), the best cutoff of
he BAD-D was 1.98 (BAD-DI of 0.72), with a sensitivity
ANCED CORNEAL ECTASIA 131 



FIGURE 3. Scatterplot matrix of the first version of the tomographic and biomechanical index (TBIv1), the optimized version of 
the TBIv2, Pentacam random forest index (PRFI), Corvis biomechanical index (CBI), the stiffness parameter at first applanation 

(SPA1), Belin/Ambrósio Deviation (BAD-D), Belin/Ambrósio Deviation normalized index (BAD-DI), and age. KC = keratoconic, 
N = normal patient, VAE-E = ectatic unoperated eyes from the very asymmetric ectasia patients, VAE-NT = normal topography 
from very asymmetric ectasia patients. 
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of 96.8% and a specificity of 99.3%. The best cutoff for dis-
tinguishing the normal and the diverse VAE-NT group was
1.27 (BAD-DI of 0.31) with 70.8% sensitivity and 80.4%
specificity. Interestingly, the cutoff of 1.6 (BAD-DI of 0.51),
in which the parameter turns yellow in the BAD-D, would
lead to 94% specificity and 98.4% sensitivity for clinical ec-
tasia, but with a low sensitivity of 52.1% for the cases with
VAE-NT. 

In the original TBIv1 study, 17 objective criteria were
rigorously applied for the cases with VAE-NT to be consid-
132 AMERICAN JOURNAL OF OP
red typical topometric data, including the KC percentage
ndex (KISA%) lower than 60 and a paracentral IS-value at
 mm (3 mm radii) less than 1.45D. 65 This criterion avoids
ecognized problems related to subjectivity and inter-
nd intra-examiner inconsistencies for the classifications
f topometric maps. 66 Although 511 (92.7%) VAE-NT
yes obeyed such a criterion, there were 40 eyes from
his group in the current study with objective topometric
bnormalities. These cases were kept in the VAE-NT group
s primarily selected SCKC because they were confirmed
HTHALMOLOGY JULY 2023 



FIGURE 4. Box and dot plots showing the distribution of metric values across the groups (n = 1680 normal eyes [N], 1181 kera- 
toconic eyes [KC], 551 eyes with normal topography from very asymmetric ectasia patients [VAE-NT], and 474 ectatic unoperated 
eyes from the very asymmetric ectasia patients [VAE-E]). A. The first version of the tomographic and biomechanical index (TBIv1). 
B. The optimized version of the TBIv2). C. Pentacam Random Forest Index (PRFI). D. Corvis Biomechanical Index (CBI). E. Be- 
lin/Ambrósio Deviation (BAD-D). F. Belin/Ambrósio Deviation normalized index (BAD-DI). The box spans the first and third 
quartile. The whiskers indicate the 1.5-fold interquartile range. Colored markers representing each value in each patient and its 
mean are superimposed. 
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to be the cases with VAE, considering the findings in the
fellow VAE-E eye. Interestingly, accordingly to Rabinowitz
and associates, 67 these cases are consistent with the criteria
for FFKC. 35 From the 511 cases with VAE-NT with ob-
VOL. 251 OPTIMIZED TBI FOR ENH
ectively typical topometric data, 75.1% had TBIv1 higher
han 0.29 and 83.3% had TBIv2 higher than 0.43. 

The asymmetry of the IS-value within 6 mm, as de-
cribed by Rabinowitz, 59 with the classical cutoff value of
ANCED CORNEAL ECTASIA 133 



FIGURE 5. Receiver operating characteristic (ROC) and separation (SEP) curves for the different studies. A. Normal vs all groups 
(keratoconus [KC] + very asymmetric ectasia with clinical ectasia (VAE-E) + the normal topography eye from very asymmetric 
ectasia patients [VAE-NT]). B. Normal vs clinical ectasia (KC + VAE-E). C. Normal vs VAE-NT. BAD-D v3 = Belin/Ambrósio 
(version 3) Deviation, BAD-DI = Belin/Ambrósio Deviation normalized index, CBI = Corvis Biomechanical Index, PRFI = Pen- 
tacam Random Forest Index, TBI = tomographic and biomechanical index. 
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FIGURE 6. Correlation between the original (TBIv1) and the optimized version (TBIv2) of the tomographic and biomechanical 
index. KC = keratoconic, N = normal patient, VAE-E = ectatic unoperated eyes from the very asymmetric ectasia patients, VAE- 
NT = normal topography from very asymmetric ectasia patients. 
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1.6, would lead to a specificity of 99.6% and a sensitivity
of 5.1% for the cases with VAE-NT and 84.5% for clinical
ectasia. Reducing the cutoff to 1.45D, the specificity would
decrease to 99.3%, with a sensitivity of 86.6% for clinical
ectasia and 6.9% for the cases with VAE-NT. The Kmax
with a cutoff value of 47.6D would lead to a specificity of
97.7% and a sensitivity of 82.1% for clinical ectasia and
a sensitivity of 4.9% for the cases with VAE-NT. Interest-
ingly, 8% of the clinical ectatic patients had a Kmax lower
than 46D, and 3.3% had a Kmax lower than 45D. The ART-
max, 64 with a cutoff value of 329 µm, has a specificity of
98% and a sensitivity of 93.7% for clinical ectasia but only
34.7% for VAE-NT. Considering the cutoff of 387 µm for
ART-max, the specificity would decrease to 83.6%, with a
sensitivity of 65.7% for VAE-NT. 

DISCUSSION 

The current multicenter cross-sectional case-control ret-
rospective study demonstrated the ability to optimize AI
algorithms integrating Scheimpflug-based corneal tomo-
graphic and biomechanical data to enhance ectasia detec-
tion. AI has the capacity to (and should) continuously
evolve, boosting its complexity to improve accuracy. 7 , 68 

AI improvements occur through better training, which ne-
cessitates more data for the refinements. The “Knowledge
Discovery in Databases” process was applied for data min-
VOL. 251 OPTIMIZED TBI FOR ENH
ng and developing AI functions. 61 Feature selection tech-
iques included forward selection, backward elimination,
nd genetic algorithms. 62 There are 2 ways to gather more
nformation for the training protocols: larger population
ata sets and novel attributes or parameters. 2 , 7 , 68 We an-
lyzed 3886 eyes from 3412 patients, considering 340 pa-
ameters extracted from the Pentacam and Corvis ST ex-
minations. 

Besides an extensive population data set, including a rel-
tively large set of subclinical cases was a major reason for
he success in optimizing AI training in this study. Includ-
ng such cases allows for identifying nuances in the very

ild, asymptomatic cases. In this context, patients present-
ng with VAE, in which the fellow eye had a comprehen-
ive ophthalmic examination within normal limits, have
erved as the most common models to develop, test, and
emonstrate the improved ability to detect ECD by using
dvanced imaging data. 7 , 12 , 13 , 17 , 19 , 36 , 37 , 69 Other inclusion
riteria that could represent subclinical ectasia cases in-
lude the retrospective analysis of the preoperative state
f eyes that developed progressive ectasia after LVC proce-
ures 16 and longitudinal studies that identify the relatively
ormal cases with natural ectasia evolution. 55 , 70 , 71 

The first version of the TBI training set included 94 VAE-
T eyes, from which 85 (90.4%) had TBIv1 higher than

.29. 17 The current study included 551 patients with VAE,
ith 511 within the rigorous, objective criteria for VAE-N:
ISA less than 60 and IS-value lower than 1.45D. 65 In this
ore extensive series of cases with VAE-NT, the sensitivity
ANCED CORNEAL ECTASIA 135 



TABLE 3. Description of the AUC and AUSEP Curves 
Calculated Between the Limits of −1 and + 1 Standard 

Deviations for (A) Normal vs All Groups 
(KC + VAE-E + VAE-NT], (B) Normal vs Clinical Ectasia 

(KC + VAE-E), and (C) Normal vs VAE-NT 

Variable AUC SE 95% CI AUSEP 

(A) KC + VAE-E + VAE-NT 

TBIv1 0.974 0.00236 0.968-0.979 82 

TBIv2 0.985 0.00156 0.981-0.989 87 

PRFI 0.972 0.00239 0.967-0.977 68 

BAD-D 0.952 0.00336 0.945-0.959 72 

CBI 0.923 0.00418 0.914-0.931 68 

(B) KC + VAE-E 

TBIv1 0.999 0.000269 0.997-1.000 93 

TBIv2 0.999 0.000339 0.997-1.000 75 

PRFI 0.999 0.000326 0.997-1.000 87 

BAD-D 0.995 0.00114 0.992-0.997 75 

CBI 0.968 0.00283 0.962-0.974 81 

(C) KC + VAE-NT 

TBIv1 0.899 0.00861 0.886-0.911 58 

TBIv2 0.945 0.00574 0.935-0.954 70 

PRFI 0.893 0.00862 0.879-0.905 36 

BAD-D 0.823 0.0112 0.807-0.839 38 

CBI 0.788 0.0116 0.771-0.805 39 

AUC = area under the receiver operating characteristic curve, 

AUSEP = area under the separation curve, BAD-D v3 = Be- 

lin/Ambrósio (version 3) Deviation, CBI = Corvis Biomechanical 

Index, KC = keratoconic, PRFI = Pentacam Random Forest In- 

dex, TBI = tomographic and biomechanical index, VAE-E = very 

asymmetric ectasia with clinical ectasia, VAE-NT = normal topog- 

raphy from very asymmetric ectasia patients. 

SE, calculated by Bimonial exact; 95% CI, calculated based on 

DeLong’s method. 59 

o  

T  

<

 

t  

i  

l  

P  

w  

T  

c  

l  

t  

h  

h  

g  

d  

t  

a  

t  

D
 

t  

s  

A  

i  

m  

d  

t  

F  

p  

t  

c  

V  

a  

t  

s  

TABLE 4. Descriptive Median and Range (Minim

Clinically Normal (n = 1680) KC (n = 1181) 

Minimum Median Maximum Minimum Median Maxi

TBIv1 0 0.028 0.734 0.148 1 1

TBIv2 0 0.09 0.985 0.141 1 1

PRFI 0 0.038 0.466 0.054 0.986 1

BAD-D (v3) −1.13 0.81 2.81 0.49 6.64 33

CBI 0 0.175 0.964 0.035 0.979 1

IS-value (D) −1.63 0.11 2.16 −2.87 4.66 29

Kmax (D) 39.6 44.5 49.8 41.5 52.3 85

ART-max ( µm) 267 454 786 0 176 72

ART-max = Ambrósio’s relational thickness to the maximal progression m

Biomechanical Index, IS-value = the infer ior-super ior asymmetry at 6 mm 

surface, PRFI = Pentacam Random Forest Index, TBIv1 = original tomo

tomographic and biomechanical index. 

136 AMERICAN JOURNAL OF OP
f the TBIv1 for the same cutoff of 0.29 was 76%. The new
BIv2 augmented the sensitivity up to 84.4% (DeLong, P
 .0001). 
The higher accuracy of the TBIv2 over the TBIv1 

17 and
he PRFI 16 could not be shown by the ability to detect clin-
cal ectasia. Either TBIv1, TBIv2, and PRFI had a simi-
ar AUC of 0.999 with no statistical significance (DeLong,
 = .818). The TBIv2 had a slight advantage in accuracy,
ith 98.7% sensitivity, 99.2% specificity, and a cutoff of 0.8.
he TBIv1 had 98.5% sensitivity, 98.6% specificity, and a
utoff of 0.5. Paradoxically, the AUSEP of the TBIv2 was
ower, which may be related to the higher cutoff. Also, al-
hough TBIv2 had a higher specificity, more normal cases
ad higher values ( Figure 4 ). The interpretation for the
igh TBIv2 scores in some eyes in the clinically normal
roup is that those cases may have a higher susceptibility to
eveloping ectasia, which can be tested in future prospec-
ive studies using finite element simulations. 31 Considering
ll cases, the TBIv2 also had a higher AUC (0.985) than
he TBIv1 (0.974; DeLong, P < .0001) and PRFI (0.972;
eLong, P < .0001). 
A significant limitation of this study is related to the fact

hat the cases with VAE represent a diverse group because
ome may be genuine cases with unilateral ectasia. 54-57 , 71 , 72

ccording to Global Consensus from 2015, KC is, by def-
nition, an asymmetric bilateral disease, while secondary

echanical-related ectasia may occur in only 1 eye. In ad-
ition, the 2015 consensus failed to reach an agreement on
he definition of FFKC. 58 Nevertheless, the concept that
FKC remains with high ectasia susceptibility, but did not
rogress to the disease’s full-blown (forme pleine) presen-
ation. 73 Although there is a significant variability in the
riteria for defining SCKC and FFKC in the literature, the
AE-NT group may represent a logical group to test the
bility of any parameter to quantify the level of predisposi-
ion or susceptibility for corneal biomechanical decompen-
ation. 55 , 69 , 74 Another limitation of the current study was
um to Maximum) for the Main Parameters 

VAE-E (n = 474) VAE-NT (n = 551) 

mum Minimum Median Maximum Minimum Median Maximum 

 0.261 1 1 0 0.546 1 

 0.29 1 1 0 0.865 1 

 0.124 0.978 1 0 0.302 0.986 

.42 0.1 6.105 30.63 −0.82 1.64 5.65 

 0.019 0.967 1 0.003 0.566 1 

.68 −7.08 3.85 19.84 −1.49 0.6 4.3. 

.1 42.5 51.6 86.2 38.9 44.7 55.1 

0 0 196 467 126 362 638 

eridian, BAD-D = Belin/Ambrósio Deviation (version 3), CBI = Corvis 

in diameter, Kmax = maximal keratometric (axial) value on the front 

graphic and biomechanical index, TBIv2 = optimized version of the 
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not to include less common phenotypes of “natural” ectasia:
pellucid marginal degeneration and keratoglobus. 75 Still,
these cases have typical presentations that may facilitate
clinical diagnosis; there is a need for future studies testing
the accuracy of the novel TBIv2 for detecting such cases. 

The BrAIN-TBI or TBIv2 was the most consistent AI al-
gorithm using a novel RF, including 18 features ( Table 2 ) in
156 trees with 10-fold cross-validation. The parameters that
were selected had relatively high clinical relevance. Ro-
tating Scheimpflug tomography (Pentacam) 76 , 37 provided
10 features, and 8 parameters were derived from Corvis
ultrahigh-speed Scheimpflug imaging during the noncon-
tact tonometry. 77 , 78 The Pentacam parameters included the
PRFI, 16 the paracentral IS-value at 6 mm (3 mm radii), 65 3
metrics from corneal wavefront, 11 1 metric from peripheral
vertical pachymetric asymmetry, 79 , 80 the vertical deviation
of the Kmax, 2 metrics from Belin’s enhanced back eleva-
tion, and 1 metric from anterior elevation. 81-83 The CBI, 15 

Roberts’s stiffness parameters (at first applanation and at
highest concavity momentum), 84 , 85 and other corneal de-
formation parameters were included. 77 , 78 

RF is an advanced compound method that involves mul-
tiple DT. As in a classic DT, the analyzed case is succes-
sively split into 2 mutual subgroups (branches) that subdi-
vide until a final decision on class assignment (leaves). The
RF approach considers numerous trees for a cooperative ef-
fort for the decision output. The algorithm grows the trees
by sampling the data into random subgroups. Some input
variables are also randomly selected to test the data splitting
at each node. According to an objective function, the pre-
dictor variable that delivers the best split is applied to each
node. Each tree gets a “vote” in the classification process.
The final classification is based on the votes of all trees for
providing a combined value that typically varies from zero
to 1. 86 

The consistency of the model is highlighted because both
the NN/MLP and LRA algorithms employing the same 18
variables had equally good diagnostic performances. As an
iteration process, the RF model with these 18 variables
trained with LOOCV had a slightly better AUC of 0.987
for all cases (N × KC + VAE-E + VAE-NT) but with
no statistical significance (DeLong, P = .169). As for any
machine learning method, it is fundamental to include a
cross-validation method to minimize the risk of overfit-
ting. Proper cross-validation will infer or presume the abil-
ity to generalize the external validity of the model. The
first version of the TBI used LOOCV. 17 In contrast, the
current study employed 10-fold cross-validation because of
the larger population as it decreases computational time
and complexity, still maintaining and possibly enhancing
generalization. By this means, the 10-fold cross-validation
ensures the reliability or robustness of the model for clas-
sifying new data. Unlike LOOCV, the database is ran-
domly divided into 10 groups, balancing the number of
cases in the subgroups. Subsequently, the AI training of
the model has repeated 10 folds. Each time, one group is
VOL. 251 OPTIMIZED TBI FOR ENH
xcluded, in which the model trained with the 9 of 10
ases is tested. The reported outcomes of the TBIv2 in-
lude the outputs from the 10-fold cross-validation model.
hese results present a lower (less optimistic) accuracy
hen compared with the virtually perfect accuracy of the
nal TBIv2 model that contemplates all cases and will be
rogrammed in the commercial Oculus software (Ambró-
io, Roberts & Vinciguerra Tomography and Biomechani-
al Display). However, the cross-validation results are ex-
ected to represent a more trustworthy picture of the ex-
ected generalized performance for the TBIv2 in clinical
pplication. 

The last 3 decades witnessed a tremendous advance in
orneal imaging, which includes the development of high-
esolution technologies capable of detailed characteriza-
ions of different aspects of corneal shape and anatomy
nd introducing scientifically validated methods for repre-
enting and interpreting the generated data. 87 Applying AI
as a natural progression for analyzing the overwhelming
lethora of available data. 7 , 8 , 54 

Placido disk–based corneal topography characterizes the
nterior or front corneal surface, enabling the detection
f abnormalities consistent with mild-to-moderate forms
f KC in eyes with normal slitlamp biomicroscopy and
ormal distance-corrected visual acuity. 88 , 89 There are still
ases that develop ectasia despite relatively normal pre-
perative topography before laser in situ keratomileu-
is (LASIK), 30 , 90-92 SmILE (small incision lenticular ex-
raction), 93 , 94 surface ablation, 95 and even LASIK-Xtra
LASIK with prophylactic crosslinking). 96 Ectasia detec-
ion is also relevant when evaluating candidates for refrac-
ive cataract surgery, 97 because it impacts intraocular lens
alculation, quality of vision, and the ability for corneal en-
ancements. 98 , 99 

Front surface corneal topography evolved into 3-
imensional tomographic analysis, which characterizes the
ront (including topometric or curvature) and back surfaces’
levation and thickness mapping. 100 Further advances in
orneal imaging allowed for segmental or layered tomo-
raphic (3-dimensional) characterization with epithelial
hickness 14 , 101-103 and Bowman’s layer mapping. 20 , 104 , 105 

eyond shape analysis, in the context of multimodal refrac-
ive imaging, 8 clinical biomechanical assessment has been
onsidered an additional tool for augmenting the sensitiv-
ty for identifying mild forms of ECD and the character-
zation of the inherent susceptibility for ectasia progres-
ion. 17 , 53 , 106 , 107 Future biomechanical assessment to char-
cterize material stiffness using Corvis ST data (ie, stress-
train index map) 108 or from novel tools such as Bril-
ouin microscopy 109-113 and phase-decorrelation ocular co-
erence tomography 109 , 114-116 may further enhance AI ap-
lications. Ultimately, genetic testing through linkage anal-
sis or genome-wide association studies may further eluci-
ate about the intrinsic susceptibility for biomechanical de-
ompensation, which promises to test and further improve
I for ectasia diagnosis. 117-119 
ANCED CORNEAL ECTASIA 137 
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This study was limited to patients with unoperated
corneas. Future external validation studies are needed to
test the accuracy of the TBIv2, including testing the speci-
ficity among cases with high astigmatism, corneal warpage,
and dry eye. Further AI optimization is expected for post-
LVC procedures, as developed by Vinciguerra and asso-
ciates 120 for the CBI after LVC. In addition, specific im-
provements for certain ethnicities (ie, Chinese and Sub-
Saharan Africa) can augment specificity while not jeop-
ardizing the model’s sensitivity. Besides diagnosis, AI can
be developed to improve prognosis and clinical follow-up,
as described by integrating biomechanical parameters into
Belin’s tomographic ABCD system. 121-123 The relevance
for enhanced ectasia detection may go beyond the man-
agement of cases with ECD and assessing ectasia risk be-
fore elective LVC procedures. For example, there are dif-
ferent associations of KC with posterior segment structure
findings (ie, optic nerve head and the choroid). 124 In ad-
dition, the hypothesis that mild or SCKC could be a risk
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